Theoretical Study of Coupling Mechanism between FBG and Shock Waves of Rock Burst

Authors: Shiming Wei, Zesheng Zhang, Yao Wang

ABSTRACT
To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves was theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period Ʌ and effective refractive index n of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.

Source:

Journal: World Journal of Engineering and Technology
DOI: 10.4236/wjet.2020.84057(PDF)
Paper Id: 104354 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in WJET. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *