The Third Polarization of Light

Author(s): Richard A. Hutchin

ABSTRACT

A SQUID (Superconducting Quantum Interference Device) measures the magnetic flux inside the loop using the voltage across a pair of Josephson junctions. The signal goes through one oscillation every magnetic flux quantum (h/2e) and is the most sensitive magnet field detector in the world. It measures the magnetic flux even when no magnetic or electric field touches any part of the circuit.
A SQUID (Superconducting Quantum Interference Device) measures the magnetic flux inside the loop using the voltage across a pair of Josephson junctions. The signal goes through one oscillation every magnetic flux quantum (h/2e) and is the most sensitive magnet field detector in the world. It measures the magnetic flux even when no magnetic or electric field touches any part of the circuit.

We are all taught that there are only two polarizations of light because Maxwell’s equations only support two polarizations. This is mathematically true for the electromagnetic fields, but we have learned since the days of Maxwell that the “real” electromagnetic field is not the electromagnetic field tensor Fμv (composed of Electric and Magnetic field terms) but rather the electromagnetic vector potential Aμ. When considered carefully, this requires a third polarization of light with very unusual properties. This third polarization of light does not generate electric or magnetic fields but should be detectable by its impact on supercurrents or quantum interference. It is also unavoidable since it automatically appears under Lorentz transformations to different moving frames.

Discussion
Much of our tradition in E&M theory is that the electric and magnetic fields are the reality, and the vector potential is a computational convenience. However, for over half a century, the evidence has accumulated that the vector potential is the fundamental field, and the SQUID experiment without any E or B fields touching the circuitry is the extreme verification of that hypothesis. Once we reach that conclusion and show that a third polarization cannot be avoided in a Lorentz invariant universe, then we need to consider the possibility that there is a physical third polarization of light that interacts very differently from the other two.

Conclusions
Assuming this result of a third polarization stands up to review, it would seem to be an opportunity for experimentalists to try to detect and characterize it. The logical place to begin is an AC superconducting experiment that can differentiate between conventional E&M waves and vector potential waves. Since the field amplitude matches k, it will generate a supercurrent oscillating in the direction of light propagation, while conventional E&M light waves create currents perpendicular to the direction of propagation―a simple discriminator.Also, suppose we take a source of light and pass it through X and Y wire grid polarizers. The third polarization, without any E and B fields to generate wire grid currents, would pass through the polarizers and still interact. Alternatively, perhaps this mode will penetrate through room temperature opaque materials without being absorbed well since it has no E and B fields to interact, allowing another detection discriminator.Experiments always have the last word.

Source:

Journal: Optics and Photonics Journal


DOI: 10.4236/opj.2015.52004 (PDF)
Paper Id: 54293 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in OPJ and tagged , , . Bookmark the permalink.

Comments are closed.