Performance Estimation of HEVC/h.265 Decoder in a Co-Design Flow with SADF-FSM Graphs

Authors: Habib Smei, Abderrazak Jemai, Kamel Smiri

ABSTRACT
Multiprocessor System on Chip (MPSoC) technology presents an interesting solution to reduce the computational time of complex applications such as multimedia applications. Implementing the new High Efficiency Video Coding (HEVC/h.265) codec on the MPSoC architecture becomes an interesting research point that can reduce its algorithmic complexity and resolve the real time constraints. The implementation consists of a set of steps that compose the Co-design flow of an embedded system design process. One of the first anf key steps of a Co-design flow is the modeling phase which allows designers to make best architectural choices in order to meet user requirements and platform constraints. Multimedia applications such as HEVC decoder are complex applications that demand increasing degrees of agility and flexibility. These applications are usually modeling by dataflow techniques. Several extensions with several schedules techniques of dataflow model of computation have been proposed to support dynamic behavior changes while preserving static analyzability. In this paper, the HEVC/h.265 video decoder is modeled with SADF based FSM in order to solve problems of placing and scheduling this application on an embedded architecture. In the modeling step, a high-level performance analysis is performed to find an optimal balance between the decoding efficiency and the implementation cost, thereby reducing the complexity of the system. The case study in this case works with the HEVC/h.265 decoder that runs on the Xilinx Zedboard platform, which offers a real environment of experimentation.

Source:

Journal: International Journal of Communications, Network and System Sciences
DOI: 10.4236/ijcns.2017.1011016 (PDF)
Paper Id: 80291 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in IJCNS. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *