Two-Dimensional Topology Optimization of a Horn Antenna

Author: Huaxu Dan

A two-dimensional horn antenna is used as a model for topology optimization. In order to employ the topology optimization, each point in the domain is controlled by a function which is allowed to take values between 0 and 1. Each point’s distinct value then gives it an effective permittivity, either close to that of polyimide or that of air, two materials considered in this study. With these settings, the optimization problem becomes finding the optimal distribution of materials in a given domain, and is solved under constraints of reflection and material usage by the Method of Moving Asymptotes. The final configuration consists of two concentric arcs of air while polyimide takes up the rest of the domain, a result relatively unsensitive to the choice of constraints and initial values. Compared to the unoptimized antenna, a slimmer main lobe is observed and the gain boosts.


Journal: Open Journal of Optimization
DOI: 10.4236/ojop.2020.93004(PDF)
Paper Id: 101428 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in Uncategorized. Bookmark the permalink.

One Response to Two-Dimensional Topology Optimization of a Horn Antenna

  1. says:

    Hello to all, it’s in fact a nice for me to visit this site, it consists
    of valuable Information.

Leave a Reply

Your email address will not be published. Required fields are marked *