Approximate Private Quantum Channels on Fermionic Gaussian Systems

Author: Kabgyun Jeong

ABSTRACT
The private quantum channel (PQC) maps any quantum state to the maximally mixed state for the discrete as well as the bosonic Gaussian quantum systems, and it has fundamental meaning on the quantum cryptographic tasks and the quantum channel capacity problems. In this paper, we primally introduce a notion of approximate private quantum channel (ε-PQC) on fermionic Gaussian systems (i.e., ε-FPQC), and construct its explicit form of the fermionic (Gaussian) private quantum channel. First of all, we suggest a general structure for ε-FPQC on the fermionic Gaussian systems with respect to the Schatten p-norm class, and then we give an explicit proof of the statement in the trace norm case. In addition, we study that the cardinality of a set of fermionic unitary operators agrees on the ε-FPQC condition in the trace norm case. This result may give birth to intuition on the construction of emerging fermionic Gaussian quantum communication or computing systems.

Source:

Journal: Journal of Quantum Information Science
DOI: 10.4236/jqis.2021.111001(PDF)
Paper Id: 107062 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in JQIS. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *