Representable Model of a Finished and Unlimited 3D Cosmos

Author: Marc Mignonat

A model of a 3D unlimited and finished space is presented with the philosophic prejudgement that a physical space must be representable and cannot be a virtual mathematical abstraction. This representable 3D space has 3 radii of curvature and so, is multiconnected as predicted by the theorem of perelman-Poincaré. This model respects the basic principles of the physics (Occam, Maupertuis, Mach, …) and does not question much of the content of the other models. Another way of seeing is given because: 1) this model avoids the problem of the 2 infinities; 2) it gives an additional explanation to the expansion and to the value of the density always near the critical density; the homogeneity of the cosmos is easier to explain; 3) the attraction is always attractive and it gives an explanation to the measure of the acceleration of the expansion estimated about 6 – 7 billion years and to the great attractor; 4) it predicts the existence of many “ghosts” images, as the illusion of galaxies is older than Big Bang and these galaxies are more evolved when they are older, or for example a greater number of galaxies at a distance of about 2100 Mpc, what can be verified from the NASA/IPAC measurements of 348 galaxies of redshift v > 1/8c. Other deductions are verifiable, which should invalidate or confirm this model. In Appendix, a mathematical development deliberately simple is made to remain in a representable reality and locate any point in this space. This development can allow to make links with the spaces of Minkowski.


Journal: Journal of Modern Physics
DOI: 10.4236/jmp.2020.117061(PDF)
Paper Id: 101341 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in JMP. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *