Newton’s Method and an Exact Opposite That Average into Halley’s Method

Author: Isaac Fried

This note is mainly concerned with the creation of oppositely converging and alternatingly converging iterative methods that have the added advantage of providing ever tighter bounds on the targeted root. By a slight parametric perturbation of Newton’s method we create an oscillating super-linear method approaching the targeted root alternatingly from above and from below. Further extension of Newton’s method creates an oppositely converging quadratic counterpart to it. This new method requires a second derivative, but for it, the average of the two opposite methods rises to become a cubic method. This note examines also the creation of high order iterative methods by a repeated specification of undetermined coefficients.


Journal: Applied Mathematics
DOI: 10.4236/am.2017.810103 (PDF)
Paper Id: 79773 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in AM. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *