Inference of General Mass Action-Based State Equations for Oscillatory Biochemical Reaction Systems Using k-Step Genetic Programming

Authors: Tatsuya Sekiguchi, Hiroyuki Hamada, Masahiro Okamoto

ABSTRACT
Systems biology requires the development of algorithms that use omics data to infer interaction networks among biomolecules working within an organism. One major type of evolutionary algorithm, genetic programming (GP), is useful for its high heuristic ability as a search method for obtaining suitable solutions expressed as tree structures. However, because GP determines the values of parameters such as coefficients by random values, it is difficult to apply in the inference of state equations that describe oscillatory biochemical reaction systems with high nonlinearity. Accordingly, in this study, we propose a new GP procedure called “k-step GP” intended for inferring the state equations of oscillatory biochemical reaction systems. The k-step GP procedure consists of two algorithms: 1) Parameter optimization using the modified Powell method—after genetic operations such as crossover and mutation, the values of parameters such as coefficients are optimized by applying the modified Powell method with secondary convergence. 2) GP using divided learning data—to improve the inference efficiency, imposes perturbations through the addition of learning data at various intervals and adaptations to these changes result in state equations with higher fitness. We are confident that k-step GP is an algorithm that is particularly well suited to inferring state equations for oscillatory biochemical reaction systems and contributes to solving inverse problems in systems biology.

Source:

Journal: Applied Mathematics
DOI: 10.4236/am.2019.108045(PDF)
Paper Id: 94117 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in AM. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *