Egalitarian Allocations and the Inverse Problem for the Shapley Value

Author: Irinel Dragan

In a cooperative transferable utilities game, the allocation of the win of the grand coalition is an Egalitarian Allocation, if this win is divided into equal parts among all players. The Inverse Set relative to the Shapley Value of a game is a set of games in which the Shapley Value is the same as the initial one. In the Inverse Set, we determined a family of games for which the Shapley Value is also a coalitional rational value. The Egalitarian Allocation of the game is efficient, so that in the set called the Inverse Set relative to the Shapley Value, the allocation is the same as the initial one, but may not be coalitional rational. In this paper, we shall find out in the same family of the Inverse Set, a subfamily of games with the Egalitarian Allocation is also a coalitional rational value. We show some relationship between the two sets of games, where our values are coalitional rational. Finally, we shall discuss the possibility that our procedure may be used for solving a very similar problem for other efficient values. Numerical examples show the procedure to get solutions for the efficient values.


Journal: American Journal of Operations Research

DOI: ajor.2018.86025(PDF)
Paper Id: 88284 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in AJOR. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *