Quantitative Assessment of Protective Effects of Antioxidant Agents against Drug-Induced Nephrotoxicity Using Dynamic Contrast-Enhanced Computed Tomography

Author(s): Kenya Murase, Akihiro Kitamura, Atsushi Tachibana, Yoshinori Kusakabe, Risa Matsuura, Shohei Miyazaki

ABSTRACT
Purpose: The purpose of this study was to develop a method for quantifying the extent of renal dysfunction due to drug-induced nephrotoxicity using dynamic contrast-enhanced computed tomography (DCE-CT) and to investigate the protective effects of various antioxidant agents against cis-dichlorodiammineplatinum (cisplatin)-induced nephrotoxicity in rats using this method. Materials and Methods: The DCE-CT studies were performed in 8-week-old male Sprague-Dawley rats. The CT scanning started 4 s before a bolus intravenous injection of iodinated contrast agent (CA) (150 mgI/kg) from the tail vein using an automatic injector and lasted 90 s at 1-s intervals. The contrast clearance per unit renal volume (K1) was estimated from the DCE-CT data using the Patlak model. The renal volume (V) was calculated by manually delineating the kidney on the CT image. The contrast clearance of the entire kid-ney (K) was obtained by . First, to investigate the effect of CA itself, the DCE-CT studies were performed without injecting cisplatin 2, 4, and 7 days after the first DCE-CT study on day 0. Second, to investigate the effect of injected dose of cisplatin, the DCE-CT study was performed after the intraperitoneal (i.p.) injection of cisplatin (1.8 mg/kg) and was repeated every other day for one week. Finally, to investigate the protective effects of antioxidant agents [L-arginine (300 mg/kg), N-acetylcysteine (500 or 1000 mg/kg), methimazole (40 mg/kg), captopril (60 mg/kg), and taurine (750 mg/kg)], the DCE-CT studies were performed on days 0, 2, 4, and 7 after the i.p. injection of cisplatin (3.6 mg/kg). For comparison, the DCE-CT data were also acquired without injecting the antioxidant agents (CDDP group). Results: When cisplatin was not injected, there were no significant changes in the K value as compared to that on day 0 within the studied period. The K valuesignificantly (p < 0.05) decreased with increasing dose of cisplatin. Although some differences were observed in the extent of change in the K value normalized by that on day 0, depending on the antioxidant agents and their injected dose and schedule, the normalized K values on day 7 in the groups injected with the antioxidant agents were significantly higher than those in the CDDP group, suggesting that the antioxidant agents studied here had protective effects against cisplatin-induced nephrotoxicity in varying degrees. Conclusion: Our method appears useful for quantitatively evaluating the protective effects of antioxidant agents against cisplatin-induced nephrotoxicity and for investigating the optimal injected dose and schedule of the agents, because it allows repeated measurements of split renal function in a single animal.

Source:

Journal: Open Journal of Medical Imaging
DOI: 10.4236/ojmi.2016.63006

(PDF)
Paper Id: 70088 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in OJIMI. Bookmark the permalink.

Comments are closed.