Pipe Flow of Suspensions Containing Bubbles

Authors: Katharina Gladbach, Antonio Delgado, Cornelia Rauh

ABSTRACT
The steady laminar pipe flow of a suspension with a gas volume fraction ∅ ≤ 0.5 and small or intermediate bubble deformations in long, and straight sections of a circular pipe is calculated. The calculations are based on the constitutive equation that was originally derived for dilute emulsions and further developed for concentrated suspensions containing bubbles. In contrast to the literature, an analytical procedure is used to determine the solution of a pipe flow more accurately. The results are presented and discussed with respect to the Reynolds number Re and capillary number Ca. If Ca < 1 or Ca > 1, a bubble suspension has a parabolic velocity profile indicating a Newtonian rheology. If Ca ≈ 1, two regimes of flow are observed in agreement with the literature; that is, an inner plug flow where deformation rates are low and an outer flow where deformation rates are high. These results imply that, if Ca < 1, the Reynolds number Re decreases with increasing gas volume fraction ∅ and that, if Ca ≥ 1, the opposite effect occurs; that is, the Reynolds number Re increases with increasing gas volume fraction.

Source:

Journal: World Journal of Mechanics
DOI: wjm.2018.810030(PDF)
Paper Id: 88162 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in WJM. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *