Variable Speed Photovoltaic Water Pumping Using Affinity Laws

Authors: Ahmed Moubarak, Gaber El-Saady, El-Noby A. Ibrahim

Photovoltaic (PV) power is most commonly used for water pumping applications. The DC output voltage of PV arrays is connected to a DC-DC converter using a maximum power point tracking (MPPT) controller to maximize their produced energy. Then, that converter is linked to a voltage source inverter (VSI) that converts DC power to AC power. Vector control is used to control the VSI fed three phase induction motor driving the water pump. The Affinity laws are used to change the pump characteristics by changing the pump speed, and consequently, the pump flow rate, head, and power will be varied. In this paper, the Affinity laws are adapted to achieve the pump hydraulic requirements while the power delivered to the pump motor remains unchanged by constructing new pump curves. A Matlab/Simulink model of the PV pumping system is observed over a wide range of weather and loading conditions.


Journal: Journal of Power and Energy Engineering
DOI: 10.4236/jpee.2017.511005 (PDF)
Paper Id: 80612 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in JPEE. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *