Turbulence Intensity Effects on a Leading-Edge Separation Bubble of Flat Plate Wing at Low-Reynolds Numbers

Authors: Katsuya Kajiwara, Masayuki Anyoji

In this study, we experimentally investigate the effects of mainstream turbulence intensity (Ti) on a leading-edge separation bubble under low-Reynolds number (Rec) conditions range of 2.0 × 104 to 6.0 × 104. We used a flat plate to fix a separation point at the leading edge. Also, we visualized the behavior of the leading-edge separation bubble using the smoke wire technique and Particle Image Velocimetry (PIV) measurement. Furthermore, we measured the effect of Ti on the turbulent transition process in the separated shear layer using a hot-wire anemometer. The results indicate that the bypass transition for large Ti causes the turbulent transition, and so accelerates the reattachment of the separated shear layer. The results show that the bypass transition promotes the reattachment of the separated shear layer to maintain the leading-edge separation bubble on the upper surface even at high angles of attack, increasing the stall angle.


Journal: Journal of Flow Control, Measurement & Visualization
DOI: 10.4236/jfcmv.2020.84012(PDF)
Paper Id: 103371 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in JFCMV. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *