Design, Thermodynamic Performance Comparison and Cost Analysis of Photovoltaic (PV), Concentrated Solar Power (CSP), Wind Turbine, Natural Gas Combined Cycle (NGCC), and Integrated Solar Combined Cycle (ISCC) Power Plants

Authors: Peter Jenkins, Gowtham Ramamoorthy

ABSTRACT
This paper evaluates and discusses ways to use five energy resources more efficiently for generating electric power. An analysis of five different 10 MW powerplants was made: a photovoltaic system, a concentrated solar power system, wind turbines, a natural gas combined cycle and an integrated solar combined cycle. Also, each power plant’s operating principle, thermodynamic analysis, economic analysis, and simulation evaluation were made using the System Advisor Model (SAM), Engineering Equation Solver (EES), and the Thermoflow Power Plant Simulation program. From the analysis, the power plant capacity factor, grid availability, levelized cost of electricity, and annual energy production are compared and analyzed to determine a suitable power plant for a given location.

Source:

Journal: Energy and Power Engineering
DOI: 10.4236/epe.2020.126018(PDF)
Paper Id: 100871 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in EPE. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *