Molecular Docking Studies on Anticonvulsant Enaminones Inhibiting Voltage-Gated Sodium Channels

Authors: Yayin Fang, Jamiya Kirkland, Isis J. Amaye, Patrice Jackson-Ayotunde,
Matthew George Jr.

Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.


Journal: Open Journal of Physical Chemistry
DOI: 10.4236/ojpc.2019.94015(PDF)
Paper Id: 96776 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in OJPC. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *