Fundamental Mechanism of Slow Crack Growth in Semi-Crystalline Polymers under a Constant Load

Author: Norman Brown

The purpose is to quantitatively present in a single equation all the factors that affect the failure time by Slow Crack Growth (SCG) in a semi-crystalline polymer (SCP) under a constant load. The fundamental mechanism of fracture is displayed at the molecular level. The rate of fracturing is determined by the Eyring theory of thermal activation. The resulting equation includes the important molecular properties of therein, the length and density of the tie molecules. The underlying microfracture process is the unfolding of the chains in the crystal under the action of the tie molecules.


Journal: Materials Sciences and Applications
DOI: 10.4236/msa.2019.1011052(PDF)
Paper Id: 96451 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in MSA. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *