Selective Monoprotection of Symmetrical Diols in a Flow Reactor

Authors: Hisashi Masui, Masaru Takizawa, Yuki Sakai, Yasuhiro Kajiwara, Kiyofumi Wanibuchi, Mitsuru Shoji, Takashi Takahashi

ABSTRACT
Desymmetrization reactions provide a powerful approach for the construction of complex molecules. Various methods have been developed for the selective monoprotection of symmetrical diols; however, their application to large-scale operations is limited. In this study, the monotetrahydropyranylation of symmetrical diols in a flow reactor has been developed, whereby the length of the flow reactor tube and the amount of acid were optimized. A higher selectivity for the monoprotected derivative was observed when the reaction was performed in a flow reactor compared with that observed in a conventional batch experiment. The efficient flow method developed herein can be applied to large-scale synthesis by numbering up the flow reactor without affecting the selectivity and yield. Since monoprotection can be achieved without using a large excess of diol, our developed flow method is effective when expensive diol must be used.

Source:

Journal: International Journal of Organic Chemistry
DOI: 10.4236/ijoc.2018.82019 (PDF)
Paper Id: 85430 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in IJOC. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *