Selection of Macroeconomic Forecasting Models: One Size Fits All?

Author: Yunyun Lv

ABSTRACT
The main distinction between this paper and traditional approach is the assumption that variables affect the economy through different horizons. Under this alternative hypothesis, a variable considered as an unimportant detail from a short-horizon perspective may become an essential factor in a long-horizon standpoint, this paper, therefore, suggests selecting variables specific to the horizon. My findings confirm that a model that allows the variables particular to the horizon has a lower Schwarz Bayesian Information Criterion (SBIC) value than a model that does not. My outcomes also show that the vector autoregression (VAR) model in general forecasts poorly compared with my approach. Likewise, I contribute to the literature by setting predictions equal to the sample mean as a benchmark and showing that the out-of-sample forecasts of the VAR model with lag length higher than one fail to outperform the sample mean. Additionally, I select principal components derived from 190 different time series to forecast a time series as the time horizon varies. Again, the results show that some of the principal components may be more important at some horizons than at others, thus I suggest selecting the principal components in a factor-augmented VAR (FAVAR) model specific to the horizon. According to above results, I conclude that long-horizon and deep-rooted economic problems cannot be fixed with short-horizon and surface-level interventions. I also reach my argument via simulation.

Source:

Journal: Theoretical Economics Letters
DOI: 10.4236/tel.2017.74048 (PDF)
Paper Id: 76047 (metadata)

See also: Comments to Paper

About scirp

(SCIRP: http://www.scirp.org) is an academic publisher of open access journals. It also publishes academic books and conference proceedings. SCIRP currently has more than 200 open access journals in the areas of science, technology and medicine. Readers can download papers for free and enjoy reuse rights based on a Creative Commons license. Authors hold copyright with no restrictions. SCIRP calculates different metrics on article and journal level. Citations of published papers are shown based on Google Scholar and CrossRef. Most of our journals have been indexed by several world class databases. All papers are archived by PORTICO to guarantee their availability for centuries to come.
This entry was posted in TEL. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *